Peony Phenology in Alaska

by
Dr. Patricia S. Holloway, Mr. Grant E.M. Matheke and Ms. Katie DiCristina
School of Natural Resources and Agricultural Sciences
Agricultural and Forestry Experiment Station

Introduction
Alaska's peony industry stretches from Fairbanks to Homer, east to Tok and Delta Junction and west to Naknek. The area is huge, the climate is diverse, and the growing conditions are varied and challenging. This diversity allows Alaska peony growers to fill a three-month void in the specialty cut flower market by having peonies available from July through September. Elevation differences at sites, especially Homer, allow for local diversity that also stretches the season.

Peony growers were interested in identifying just how diverse this state is and how measurable climatic conditions such as air temperature influence these differences. They are also interested in learning if phenological markers such as bud emergence and first color, etc. can be used in relation to thaw degree-day accumulation to predict bloom times.

This study is a long-term project. Meaningful data can only come from at least 10 years of data. The purpose of this poster is to show some preliminary trends from two years of data.

Methods
We installed Hobo dataloggers at 10 peony farms around the state and asked growers to note the date of the following phenophases: first bud emergence on one of five Sarah Bernhardt® peonies; bud emergence on all five plants; date of first color; and date of first cutting. Data were compiled for all sites, and simple comparative graphs were compiled. Data sets are too few for complete modeling.

Results
Thaw degree-days (TDD) are a measure of heat accumulation over the season. The greater the degree-days, the warmer the daily air temperature. The degree-day accumulation at the sites (Figs 1 and 2) are remarkably similar across the state. The number of degree-days accumulated for each phenophase (first cutting, first color, etc.) is also similar across sites. These data hint that we will be able to use degree-days in modeling peony growth. In the future, growers might be able to predict bloom times by the number of days or TDD after bud emergence.

The number of days within each phenophase differed radically among sites (Figs 3 - 4). The hotter Fairbanks sites completed bud emergence to flowering in as little as 32 days, while the cooler coastal and south central sites took more than twice as long.

Early season bud emergence occurred in mid to late May at each site (Table 1). The biggest difference occurred in the time between bud emergence on all plants and first color (Figs 3 - 4). Flowers growing in south central and coastal Alaska took up to four times longer to reach the first color stage than those in the Interior. These data show that peonies are strongly influenced by air temperature. With a few more years of data, we may be able to predict bloom times very early in the season by calculating degree-day accumulation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Bud</td>
<td>All Plants</td>
<td>First Color</td>
</tr>
<tr>
<td>Fairbanks UAF</td>
<td>May 23</td>
<td>June 10</td>
</tr>
<tr>
<td>Palmer</td>
<td>May 9</td>
<td>July 8</td>
</tr>
<tr>
<td>Homer</td>
<td>May 9</td>
<td>July 4</td>
</tr>
<tr>
<td>Kenai</td>
<td>May 19</td>
<td>Aug 17</td>
</tr>
</tbody>
</table>
Introduction

Alaska’s peony industry stretches from Fairbanks to Homer, east to Tok and Delta Junction and West to Naknek. The area is huge, the climate is diverse, and the growing conditions are varied and challenging. This diversity allows Alaska peony growers to fill a three-month void in the specialty cut flower market by having peonies available from July through September. Elevation differences at sites, especially Homer, allow for local diversity that also stretches the season.

Peony growers were interested in identifying just how diverse this state is and how measurable climatic conditions such as air temperature influence these differences. They are also interested in learning if phenological markers such as bud emergence and first color, etc., can be used in relation to thaw degree-day accumulation to predict bloom times.

This study is a long-term project. Meaningful data can only come from at least 10 years of data. The purpose of this poster is to show some preliminary trends from two years of data.
Methods

We installed Hobo dataloggers at 10 peony farms around the state and asked growers to note the date of the following phenophases: first bud emergence on one of five ‘Sarah Bernhardt’ peonies; bud emergence on all five plants; date of first color; and date of first cutting. Data were compiled for all sites, and simple comparative graphs were compiled. Data sets are too few for complete modelling.
Results

Thaw degree-days (TDD) are a measure of heat accumulation over the season. The greater the degree-days, the warmer the daily air temperature. The degree-day accumulation at the sites (Figs 1 and 2) are remarkably similar across the state. The number of degree-days accumulated for each phenophase (first cutting, first color, etc.) is also similar across sites. These data hint that we will be able to use degree-days in modeling peony growth. In the future, growers might be able to predict bloom times by the number of days or TDD after bud emergence.

The number of days within each phenophase differed radically among sites (Figs 3 - 4). The hotter Fairbanks sites completed bud emergence to flowering in as little as 32 days, while the cooler coastal and south central sites took more than twice as long.

Early season bud emergence occurred in mid to late May at each site (Table 1). The biggest difference occurred in the time between bud emergence on all plants and first color (Figs 3 - 4). Flowers growing in south central and coastal Alaska took up to four times longer to reach the first color stage than those in the Interior. These data show that peonies are strongly influenced by air temperature. With a few more years of data, we may be able to predict bloom times very early in the season by calculating degree-day accumulation.
Thaw Degree-days

Fig 1. Degree-day Accumulation from Bud Emergence to Cutting Stage- 2012

Kenai: 2213.9
Fairbanks: 1955.4
North Pole: 1779.0
Fairbanks UAF: 1734.3

Fig 2. Degree-day Accumulation from Bud Emergence to Cutting Stage- 2011

Kenai: 2312.9
Homer: 2015.4
Palmer: 2225.6
Fairbanks UAF: 1986.3

Days for Each Growth Stage

Fig 3. Days from Bud Emergence to First Cutting 2011

Kenai: 79
Homer: 66
Palmer: 64
Fairbanks UAF: 32

Fig 4. Days from Bud Emergence to First Cutting 2012

Kenai: 79
Fairbanks, Permafrost: Incomplete records
North Pole: 42
Fairbanks UAF: 37
<table>
<thead>
<tr>
<th>Location</th>
<th>First Bud Emergence</th>
<th>All Plants with Buds Up</th>
<th>First Color</th>
<th>Cutting Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairbanks UAF</td>
<td>May 23</td>
<td>May 25</td>
<td>June 10</td>
<td>June 24</td>
</tr>
<tr>
<td>Palmer</td>
<td>May 9</td>
<td>May 14</td>
<td>July 8</td>
<td>July 12</td>
</tr>
<tr>
<td>Homer</td>
<td>May 9</td>
<td>May 20</td>
<td>July 4</td>
<td>July 14</td>
</tr>
<tr>
<td>Kenai</td>
<td>May 19</td>
<td>May 27</td>
<td>Aug 17</td>
<td>Sept 4</td>
</tr>
<tr>
<td>2012</td>
<td>First Bud Emergence</td>
<td>All Plants with Buds Up</td>
<td>First Color</td>
<td>Cutting Stage</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Fairbanks UAF</td>
<td>May 22</td>
<td>May 24</td>
<td>June 25</td>
<td>June 28</td>
</tr>
<tr>
<td>North Pole</td>
<td>May 25</td>
<td>May 30</td>
<td>June 30</td>
<td>July 6</td>
</tr>
<tr>
<td>Fairbanks-permafrost</td>
<td>June 2</td>
<td></td>
<td>July 1</td>
<td>July 15</td>
</tr>
<tr>
<td>Kenai</td>
<td>May 19</td>
<td>May 31</td>
<td>July 26</td>
<td>Aug 6</td>
</tr>
</tbody>
</table>